Comparing Rational Functions and Simplified Functions

Learning Objective:

In this lesson, students will simplify rational functions, identify the domain, and determine points of discontinuity.

Standards:

Algebra II 7.0 Students evaluate rational expressions with monomial and polynomial denominators and simplify complicated rational expressions.

Mathematical Analysis 6.0 Students can graph a rational function.

Calculus 2.0 Students demonstrate knowledge of the graphical interpretation of continuity of a function.

Lesson:

Through T-charts and graphing students will compare the domain of rational functions and simplified functions. Students will determine points of discontinuity in rational functions.

- 1. Guided practice Teacher models worksheets #1, #2, and #3 while students fill in their copy of the worksheet.
 - Simplify the rational function
 - Fill in the f(x) and g(x) values in the T-charts
 - Graph both functions and draw a circle where a point is not defined
 - State the domain of each function. If there is a value of x where the function is undefined, identify as a point of discontinuity and state that the simplified function is continuous.
- 2. You try Students work in pairs and complete worksheet #4.
- **3.** Suggestions for choral response:
 - The hole in the graph of the rational function is called a _____. [point of discontinuity]
 - The simplified function is a polynomial and polynomials are _____. [continuous]
 - The graph of the simplified function is continuous everywhere and does not have a _____. [hole]
 - To determine the domain in a rational function, we **must** use the ______. [original function]

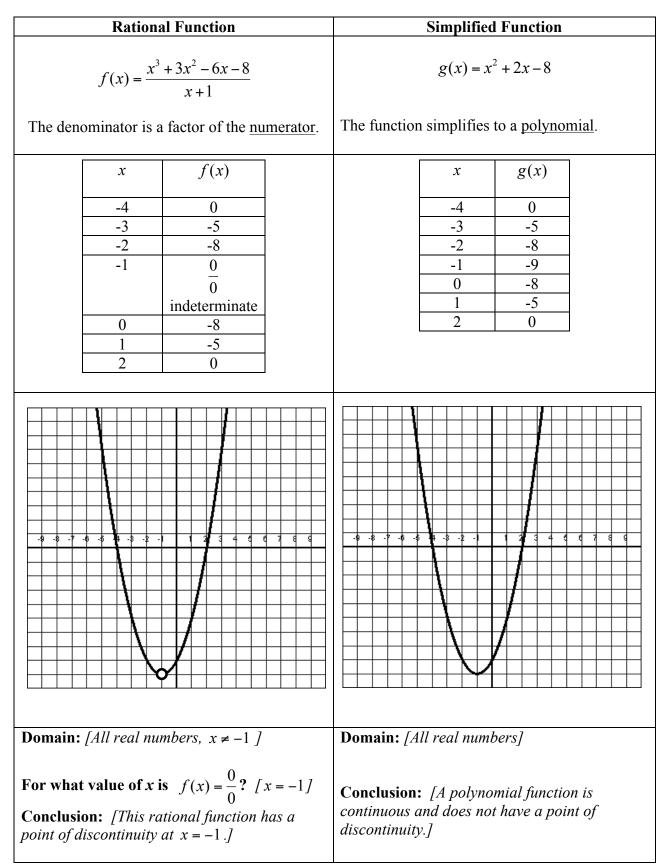
Warm-Up

CST/CAHSEE: Algebra I 12.0	Review: Algebra II 8.0		
Simplify $\frac{6x^2 + 21x + 9}{4x^2 - 1}$ to lowest terms. A. $\frac{3(x+1)}{2x - 1}$	Given $y = x^2 + 2x - 8$ Find the <i>x</i> intercepts, <i>y</i> intercept and the vertex.		
B. $\frac{3(x+3)}{2x-1}$ C. $\frac{3(2x+3)}{4(x-1)}$ D. $\frac{3(x+3)}{2x+1}$	Graph the equation and state the domain.		
Current: Algebra II 7.0	Other: Algebra I 17.0		
Simplify each function and state the value(s) of x that make the function undefined. (a) $f(x) = \frac{3-x}{x^2-3x}$ (b) $f(x) = \frac{x^2-2x-15}{x-5}$	For each graph shown, state the domain. (a) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		

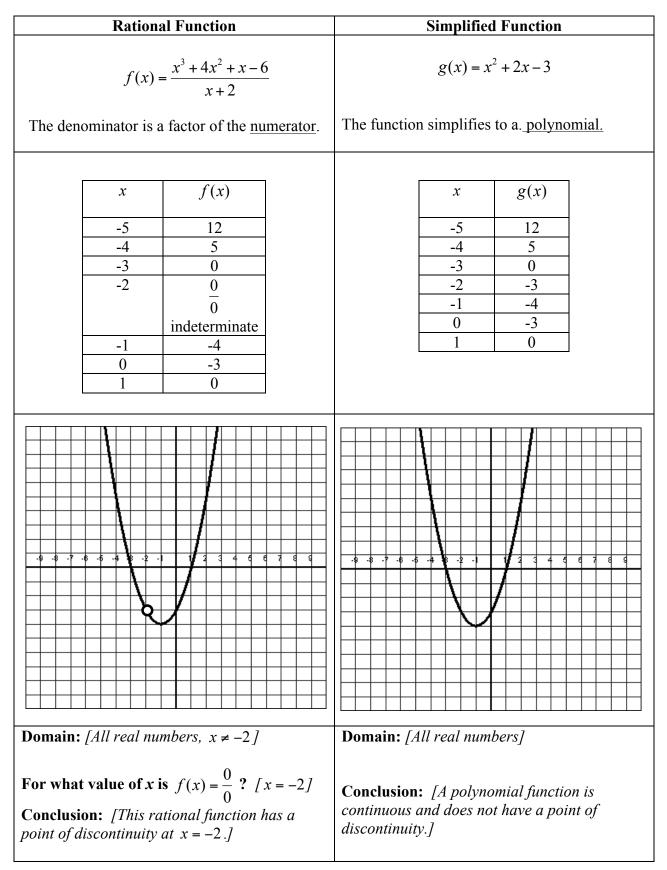
Today's Objective/Standards:

Algebra II 7.0 Students evaluate rational expressions with monomial and polynomial denominators and simplify complicated rational expressions.

Mathematical Analysis 6.0 Students can graph a rational function.


Calculus 2.0 Students demonstrate knowledge of the graphical interpretation of continuity of a function.

Rational Function	Simplified Function	
$f(x) = \frac{x^2 - 3x}{x}$	g(x) = x - 3	
The denominator is a factor of the <u>numerator</u> .	The function simplifies to a polynomial.	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Domain: [All real numbers, $x \neq 0$] For what value of x is $f(x) = \frac{0}{0}$? $[x = 0]$ Conclusion: [This rational function has a point of discontinuity at $x = 0$.]	Image: Conclusion: [A polynomial function is continuous and does not have a point of discontinuity.]	


Guided Practice - Worksheet #1 with solutions

Rational Function	Simplified Function	
$f(x) = \frac{x^2 - 2x - 8}{x - 4}$ The denominator is a factor of the <u>numerator</u> .	g(x) = x + 2 The function simplifies to a <u>polynomial</u> .	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Domain: [All real numbers, $x \neq 4$]	Domain: [All real numbers]	
What value of x is $f(x) = \frac{0}{0}$? $[x = 4]$ Conclusion: [This rational function has a point of discontinuity at $x = 4$.]	Conclusion: [A polynomial function is continuous and does not have a point of discontinuity.]	

Guided Practice - Worksheet #2 with solutions

Guided Practice - Worksheet #3 with solutions

You Try - Worksheet #4 with solutions

Summary Activities with solutions

	Rational Function	What value of <i>x</i> is excluded from the domain?	Point(s) of discontinuity	What form is the graph of the simplified function? (i.e. linear, quadratic)
a.	$f(x) = \frac{-2x^3 + 9x^2 - 10x + 3}{x - 3}$	<i>x</i> = 3	at <i>x</i> = 3	quadratic
b.	$f(x) = \frac{2x^2 + x - 1}{2x - 1}$	$x = \frac{1}{2}$	at $x = \frac{1}{2}$	linear
c.	$f(x) = \frac{x^3 - 13x - 12}{x^2 - 3x - 4}$	x = -1, $x = 4$	at $x = -1$ and at $x = 4$	linear

1. Have students work in pairs to complete the following table.

- 2. What are the similarities and differences between the graphs of the rational functions and their simplified functions?
 - Similarity same shape
 - Difference point(s) of discontinuity in rational function or hole(s) in graph
 - The rational function f(x) in the worksheets agrees with the simplified function g(x) at all points except at points of discontinuity.
- 3. Write a rational function where the graph of the simplified function is quadratic with a hole at

$$x = -5$$
. Verify that when $x = -5$, $f(x) = \frac{0}{0}$.

Answers will vary.

Example:
$$f(x) = \frac{x^3 + 8x^2 + 17x + 10}{x + 5}$$
$$f(-5) = \frac{(-5)^3 + 8(-5)^2 + 17(-5) + 10}{-5 + 5}$$
$$= \frac{-125 + 200 - 85 + 10}{0}$$
$$= \frac{0}{0}$$

MCC@WCCUSD 12/01/11

Rational Function	Simplified Function	
$f(x) = \frac{x^2 - 3x}{x}$	g(x) =	
The denominator is a factor of the	The function simplifies to a	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
Domain: For what value of x is $f(x) = \frac{0}{0}$?	Domain: Conclusion:	
Conclusion:		

Rational Function	Simplified Function		
$f(x) = \frac{x^2 - 2x - 8}{x - 4}$ The denominator is a factor of the	g(x) = The function simplifies to a		
$ \begin{array}{c cccc} x & f(x) \\ \hline 2 & \\ \hline 3 & \\ \hline 4 & \\ \hline 5 & \\ \hline 6 & \\ \hline \end{array} $	$ \begin{array}{c ccc} x & g(x) \\ \hline 2 & \\ 3 & \\ \hline 4 & \\ \hline 5 & \\ 6 & \\ \end{array} $		
Domain: For what value of x is $f(x) = \frac{0}{0}$? Conclusion:	Image: Conclusion:		

Rational Function	Simplified Function	
$f(x) = \frac{x^3 + 3x^2 - 6x - 8}{x + 1}$	g(x) =	
The denominator is a factor of the	The function simplifies to a	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	x $g(x)$ -4 -3 -2 -1 0 1 1 2 2 2 1 2 2 2 1 2 2 2 2 2 2	

Rational Function	Simplified Function		
$f(x) = \frac{x^3 + 4x^2 + x - 6}{x + 2}$ The denominator is a factor of the	g(x) = The function simplifies to a		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-5 -4 -3 -2 -1 0 1		
Image: constraint of the second state of the second st	Image: Conclusion: Image: Conclusion: Image: Conclusion: Image: Conclusion:		
Conclusion:			

Summary Activities

	Rational Function	What value of <i>x</i> is excluded from the domain?	Point(s) of discontinuity	What form is the graph of the simplified function? (i.e. linear, quadratic)
a.	$f(x) = \frac{-2x^3 + 9x^2 - 10x + 3}{x - 3}$			
	$f(x) = \frac{2x^2 + x - 1}{2x - 1}$			
c.	$f(x) = \frac{x^3 - 13x - 12}{x^2 - 3x - 4}$			

1. Have students work in pairs to complete the following table.

2. What are the similarities and differences between the graphs of the rational functions and their simplified functions?

3. Write a rational function where the graph of the simplified function is quadratic with a hole at x = -5. Verify that when x = -5, $f(x) = \frac{0}{0}$.

Vocabulary:

Rational Expression: A rational expression is an expression in the form $\frac{polynomial}{polynomial}$.

Rational Function: A rational function is a function where $f(x) = \frac{polynomial}{polynomial}$

Domain: The domain is the set of *x* coordinates.

Continuity (conceptual definition): The graph can be drawn without any breaks. From the tactile perspective, the graph can be drawn without lifting the pencil.

Point of Discontinuity (conceptual definition): Where a value for x is not included in the domain of a function because $f(x) = \frac{0}{0}$, which is indeterminate. From the tactile perspective, draw a circle on the graph to represent a point that is not part of the graph.

Suggested assessment questions: These could be used during the lesson or after as assessment questions. If used during the lesson, elect non-volunteers. Encourage students to answer in complete sentences.

- What is the hole in the graph called? [The hole in the function is called a point of discontinuity.]
- What is the difference between the graph of the rational function and the simplified function? [There is a hole in the graph of the rational function.]
- Which function is continuous? [The simplified function is continuous. The polynomial is continuous.]
- What is the domain of the simplified function? [The domain of the simplified function is all real numbers.]
- Which function has a point of discontinuity, the rational function or the simplified function? [The rational function has a point of discontinuity.]
- Why is there a point of discontinuity? [There is a point of discontinuity because there exists a value of x where $f(x) = \frac{0}{0}$.]
- Why is $f(x) = \frac{0}{0}$ not in the T-chart of the simplified function? $[f(x) = \frac{0}{0}]$ is not in the T-chart because the simplified function is a networking $[f(x) = \frac{0}{0}]$.

T-chart because the simplified function is a polynomial.]

• Why do we use the original function to find the domain of a rational function? [We need to find the *x* where $f(x) = \frac{0}{0}$, then we exclude this value of *x* from the domain.]